

Skip to content	

Julian Löhr

AR/MR/VR/HoloLens Developer

 Menu	
	Blog
	Professional Work
	Movie Sphere: A Holographic Workplace
	Blowback
	The Living Stories

	Educational Work
	Hand controller for Microsoft HoloLens (Master Thesis)
	Augmented Magic Mirror
	AR-Sandbox
	HID Wiimote (Bachelor Thesis)
	Space Invaders
	Physics Simulation: Explosion
	TinyBot – An IRC Bot
	Living Movie

	Personal Work

Posts

Posted on 18. March 2018
HID Wiimote 0.3.0.3 & Control Center Issues
	

Control Center Issues

This smaller update is intended to combat the Control Center issue some users have. For some users it silently crashes when it tries to open the Main Window. Which after doing the driver package install is the default Window to be launched. Unfortunately, on all my machines and systems the Control Center is working as expected. Right now, I have only some little guessing, where the issue may come from, but do not have any clue about the why and how to fix it.

As I am unable to reproduce the issue, I call for your assistance to help me find the cause of that issue. For that reason, I added an error handler, that’ll catch all errors and display an error message with some (hopefully) useful information. It still does crash, but at least it is not silent anymore. I’d like you to try out the new version. Report back with the resulting error message and some additional information. See below on what additional information I need. Hopefully that feedback will lead me to the fix. You can report back either under this post or directly post it on the Github issue.

The newest update is available on the HID Wiimote page.

Error Reporting additional information

	Windows Edition, Version and Build, e.g. Windows 10 [S/N/Pro], 1706, 16299.309
	System language
	Time zone of your system
	Single or multiple user accounts
	Current account is administrator
	Antivirus program used (Name and Version)

Changes

	Upgrade to Visual Studio 2017 and current Fall Creators Update SDK and WDK (10.0.16299)
	Add an unhandled exception handler to the Control Center
	Fix #38: Change unit from Radians to Degree
	Fix #40: Change guitar whammy bar and touchbar mapping from RX and RY to Z and RZ
	Fix #41: Home button mapped to wrong output when using Nunchuck

Posted on 3. October 2017
HID Wiimote 0.3.0.2
	

Recently some users were asking about compatibility and related issues. However it took some time until one was finally dropping a name and i figured all issue were about the same game. Just to make things quick in the future, if you have any game/tool/program that HID Wiimote does not work with, state its name along with the issue in detail. That way i can specifically look into it. If the particular piece of software is either still in active development or open source, there is a good chance i am able to fix it.

So this update is mainly for Clone Hero and Rewired, along with a minor fix for some rare Nunchuk regression. The update is available on the HID Wiimote page.

Extension Subtypes

Extensions for the Wii Remotes are using a six byte long identifier in a format of 0xXXXX A420 ZZZZ. The ZZZZ part is the extension type, as in class of extension. It is different for all the various extensions (Nunchuk, Classic Controller (Pro), Balance Board, Guitar Hero Accessory). The XXXX part is for most extensions just 0x0000 and does not need any special attention. However the Classic Controller and Classic Controller Pro are using the same extension type identifier (the ZZZZ part) and differ in their XXXX part. Classic Controller are using 0x0000, whereas the Classic Controller Pro reports 0x0100. So the XXXX can be viewed as subtype identifier, to distinguish between the normal and Pro variant. Another example are the Guitar Hero accessories, as they’re all using the same extension type identifier of 0x0103. Their subtype is different though (Guitars 0x0000, Drum Sets 0x0100 and Turn Tables 0x0300).

With 0.3.0.0 i changed the extension identification process. For the bumper and trigger mapping the driver needs distinguish between the Classic Controller and Pro variant. The non-Pro variant has some analog triggers and therefore needs some special handling. So the identification process was changed to check against a composite identifier composed of the extension type and subtype parts. However one user reported a regression, that his Nunchuck doesn’t work anymore (it works in pre 0.3.0.0 and other Nunchucks work fine in 0.3.0.0+). It seems some other extensions are also using the subtype identifier for purposes that are unknown. In order to fix the regression, the identification process was reverted back. An explicit subtype check is only used for the Classic Controller (Pro) extension type.

Product and Serial String

As mentioned users were reporting that the driver wasn’t working with the game Clone Hero. I tried it myself and indeed for some reason it wasn’t working at all. You can tell by its directory layout that it is obviously made with Unity. In the past i already tested compatibility with Unity and verified it. So that was weird. After looking through the game folder i found some DLLs named Rewired. Rewired is a third-party Unity package for extensive input support. It adds various controllers, native APIs and their support, as well as button remapping tools.

Rewired provides a Trial. After downloading and doing some tests, its DirectInput mode was working fine. However RawInput was not at all, as in the controller didn’t even show up. A simple RawInput implementation was working fine though. I contacted the developer of Rewired about any special handling or filtering done by the package. They did some tests themselves and reported back quite quickly, so props for them.

The Windows HID API provides methods to retrieve a Product, Manufacturer and Serial string from the device. Apparently the default HidBth minidriver simply reports back the Bluetooth address as serial number. This can then be used to retrieve additional information about the actual Bluetooth device node. Rewired relies on that particular behavior and therefore was ignoring the controllers. The implementation of those strings were on the feature list for HID Wiimote. Though somewhere down the list at “Implement when necessary”. That case was apparently now. After adding support for the Product and Serial strings HID Wiimote is now compatible with Clone Hero, Rewired and any other that relies on that behavior.

Changes

	Change checking Extension subtype
	Add Product and Serial string support
	Add minor delay to update process for UX
	Change wording from “Switch” to “Swap”

Posted on 7. September 2017
HID Wiimote 0.3.0.1
	

Just a small update for HID Wiimote to fix the Guitar Hero stuff. I somehow messed up some indices in the first place. And later messed up some other again when refactoring some code. In the end the Whammy and Touch Bar (RX and RY axes) and the buttons were mapped to the X and Y axes. That’s why some buttons were permanently reported as pressed. So changing four lines of code (one index each line) fixed it.

I’ve also changed the default settings for new devices, that have never been connected yet. The default settings should now reflect the behavior of pre 0.3.0.0.

In case you have 0.3.0.0 installed, you can simply update the driver by downloading the newest version and running the new Control Center binary. It’ll automatically detect the old version and replace it for you. However 0.2.7.4 and below have to be removed manually before updating.

Download available on the HID Wiimote page.

Changes

	Fix #24 & Fix #31: Fix Guitar Hero Buttons, Whammy and Touch bar
	Fix not detecting certain GH Accessories
	Change default settings for new unknown devices to have accelerometer and trigger axis enabled

Posted on 9. August 20179. August 2017
HID Wiimote 0.3.0.0
	

Long time no see/read/update….

So far my development and release strategy for the multi driver mode feature was to design, implement and release it in one go. However such multi mode driver design isn’t that trivial. Combine that with my lack of development time for this project and the result was being stuck for a long time.

But that is changing now. I am going to release the multi driver mode feature in multiple steps as i progress development. The benefit is that new features are available earlier. On the downside development time may increase, as i need to reimplement and refactor the codebase. Furthermore settings are not guaranteed to be stable among releases. But slow progress is better than no progress at all.

What’s new?

This update introduces the Control Center. That is an user mode application, that’ll act as installer and device settings tool. The installer let’s one easily enable and disable Driver Signature Verification (via Test Mode) and install and remove the HID Wiimote device driver. Furthermore for future updates it will automatically detect whether the device driver is installed and replace it (This does not work with pre 0.3.0.0 drivers, so for this update one has to manually remove any previous driver version). The Control Center shows all connected Wiimotes and let’s one apply device specific settings. Those settings include disabling a Wiimote’s accelerometers and some Classic Controller/Wii U Pro Controller mapping variations.

HID Wiimote Installer Window
HID Wiimote Control Center
Upcoming & Roadmap

The current release only includes the gamepad mode. The following updates are going to resolve around adding further driver modes. The goal is to finally have one driver supporting all kinds of different mode, i.e. IR mouse, DPad mouse, etc.

Next up is the raw/passthrough mode. That’ll make HID Wiimote compatible with third party applications, by letting them access the Wii Remote through my driver. So no more annoying driver switching. After that the mouse modes will be added. So long the old mouse version are still available, but won’t get any updates.

Final Words

As said the current release only includes the gamepad mode. So no update for people that use the Wiimote as mouse. Also to simplify the development process a Control Center is only compatible with its accompanied device driver version.

Before updating please remove any previous HID Wiimote Version.

As always downloads are available on the HID Wiimote page.

Change Log

	Implement #2: Basic Tool for device specific settings, including an installer replacing TinyInstaller
	Fix phony button presses when connecting extension

Posted on 24. January 201631. January 2016
HID Wiimote Gamepad 0.2.7.0
	

Rather small technical changes for HID Wiimote. First one is primary a fix for Unity3D, when you want to use the Wiimote as gamepad. Unity3D uses RawInput instead if DirectInput, when reading from generic non XInput Gamepads. It seems RawInput has some issues with axes that have a negative value range, e.g. -127 to 127. So the change is to simply use a value range from 0 to 255.

The support for the Balance Board and Guitar Hero Guitar are completely untested and therefore pure experimental. I do not have a Balance Board nor a Guitar, therefore i am not able to test it(i might get a Balance Board in February). So use on your own risk, but you are welcome to report any issues and i’ll attempt to fix them.

Downloads are available on the HID Wiimote page.

Changes

	Fix RawInput not reading the primary axes correctly
	Add experimental untested Balance Board support
	Add experimental untested Guitar Hero Guitar support

Posted on 14. January 2016
Current State of Windows HIDAPI and Wiimotes
	

Introduction

This is a small follow up on my testings. Long time it was believed that the PlusInside Wiimotes (“-TR”) are not working with the default Bluetooth Windows Stack. Every program and library recommends the common Toshiba Bluetooth “hack” to get “-TR” Wiimotes and Wii U Pro controllers working on Windows. I did some research with the HIDAPI on Windows and came to the result, that on Windows 8 and above using the proper API Calls, “-TR” Wiimotes, as well as the Wii U Pro Controller is working perfectly fine.

I implemented and fixed the Wiimote Code in the Dolphin Project, which also lead to improved Wiimote Audio for “-TR” Wiimotes.

TLDR;

Using the proper API Calls the Toshiba Bluetooth Stack is not needed anymore on Windows 8 and above. Both Wiimotes types (TR & non-TR) and the Wii U Pro are working fine. Here is the code repository of my test program.

The following post is basically just a copy & paste of the Readme, as it got quite extensive.

Windows 7

The API Calls would also work fine on Windows 7, but there is a bug in the Microsoft HID Class Driver. This renders the “WriteFile”-Method unusable on Windows 7, therefore it is not possible to use the HIDAPI to send data to “-TR” Wiimotes.

HIDAPI

Sending & Receiving

Sending HID Reports:

	WriteFile (Preferred)
	HidD_SetOutputReport

Recieving HID Reports:

	ReadFile (Preferred)
	HidD_GetInputReport

The MSDN Design Guides Sending HID Reports and Obtaining HID Reports are stating, that WriteFile and ReadFile are the preferred methods to send and recieve data from the device. Additionally sending data to a “-TR” Wiimote via WriteFile is working fine, whereas using HidD_SetOutputReport will result in the Wiimote turning off.

Issues with WriteFile

As the MSDN Desgin Guide Sending HID Reports by Kernel-Mode Drivers (WriteFile will send out an IRP_MJ_WRITE request to the driver interface) suggests, the output report buffers shall have the size of the largest output report supported by the device. In case of the Wiimote this is 22 Byte.

This seems to be currently enforced by the Microsoft HID Class Driver on Windows 7 and the Toshiba Bluetooth Stack, as they will fail WriteFile attempts with the error ERROR_INVALID_USER_BUFFER, when the buffer size is less.

On Windows 7 however more bytes than the acutal report are sent to the device, which produces an error on the Wiimote. It is unknown whether this is a bug or intented behaviour. The Toshiba Bluetooth Stack in contrast only sends the appropiate amount of bytes according to the used report to the device.

On Windows 8 and higher, the output report buffer can be arbitrary in size, as the given amount of byte are submitted to the device.

This results in the following table of compability.

Table of compability

	x	Toshiba Stack	Win 7	Win 8.1	Win 10
	WriteFile Largest Report Size	+	–	–	–
	WriteFile Acutal Report Size	–	–	+	+
	SetOutputReport	–	+*	+*	+*

* does not support “-TR” when connected via Bluetooth

Method Priority Order

This leads us to the following order of prioritized methods:

	Detect whether the Microsoft Stack or the Toshiba Stack is used for the Wii Remote.
	In case of Toshiba Stack, use WriteFile with the largest report size for the buffer
	In case of Microsoft Stack, try WriteFile with the actual report size
	If WriteFile fails, fall back to HidD_SetOutputReport

Detecting Stack

To detect the used stack for the Wiimote, the provider property of the used HID Class Driver is evaluated. As the enumerated Wiimote Devices are just raw PDO’s, that are acting as interfaces for the HID Class Driver and don’t have a driver directly associated with, it is neccessary to move one node up in the device tree to get to the device node that is associated with the HID Class Driver. To do so the PnP Configuration Manager API is used.

Why WriteFile supports “-TR”

It is believed, that the usage of HidD_SetOutputReport will result in sending the output report via the Control Channel. This is not supported by “-TR” Wiimotes, as they will immediately shut down. In contrast WriteFile seems to send the data to device via the Interrput/Data Channel.

DolphinBar

The Mayflash DolphinBar enumerates Wiimotes as USB Devices, resulting in using the Microsoft HID Class Driver. Therefore WriteFile won’t work on Windows 7 for Wiimotes connected through the DolphinBar either. However as the DolphinBar takes care of the Bluetooth communication and the outgoing data is send via USB to the DolphinBar, HidD_SetOutputReport does support “-TR” Wiimotes as long as they are connected through a DolphinBar.

Posted on 12. January 20169. August 2017
HID Wiimote 0.2.6
	

New Year; i am back in Berlin and can continue to work on HID Wiimote. Yay!

Rather small update with just one and a half fix. Regarding the connectivity issue on Windows 10 Version 1511, i had no issues while testing. Therefore i assume either the updated WDK or another Windows update fixed it. If the problem persists, please report back, so i can take another look at it.

Direct Download Links: Gamepad, IR-Mouse, DPad-Mouse

Links have been replaced with Hotfix 0.2.6.1 0.2.6.2: The installer had some problems on non English Windows Systems (and then i messed up the installer config).

Changes

	Fix #11: Improved Extension Controller detection
	Package now includes EULA and Readme file
	Replaced Multilingual Driver Package Installer with only-English one
	Introduced proper versioning, starting with 0.2.6
	Build with WDK 10.0.10586.15, to hopefully fix connectivity issues with Windows 10 Version 1511 (November Update)

Posted on 26. October 2015
Overgrowth – Sonen GameJam Fall 2015
	

			

Overgrowth is my game for the Sonen GameJam at University of Oslo in Fall 2015.

The Theme was “Abandoned”. It is a JavaScript HTML 5 game that can be played in the browser.

Synopsis: The map is wasteland like, that has been left and abandoned after some sort of catastrophe (let it be a nuclear disaster). The green stuff is kind of radiation empowered fauna. It grows quickly and aggressively. Your task is to reclaim the area, by activating the “Degenerator”.

Gameplay: You have towers (boxes with T inside) that can shoot lasers to remove the overgrowth. Those towers have an energy pool that gets drained when shooting the laser. The energy is replenished by connected generators (smaller boxes with G inside). When a building is covered by the green stuff up to a certain percentage, it stops working. So don’t forget to clean your buildings regularly. In the top right corner are three “skills”. The first one is the ordinary laser. The second and third one are construction skills, to place new towers and generators. Towers can be placed anywhere on the map (i think there is a but near the edges of the map). But remember that they are inactive when covered by green. Generators must be placed within a certain range to towers and automatically connect to the nearest tower.

Task: You main goal is to clean the “Degenerator” so it gets activated. It does not need any generators. When activated it starts working and clears the wasteland. You loose if your last tower is deactivated by the overgrowth.

The game can be played in the browser here: http://gamejam.julianloehr.de/sonen-15/

The source code is available on Github: https://github.com/jloehr/SonenGameJam-2015

Posted on 8. September 201531. January 2016
HID Wiimote Windows 10 Builds
	

Nyhet!

HID Wiimote Windows 10 Builds

Some more information

From now on there will be a unified build for Windows Desktop systems. The new WDK 10 makes it possible and in return it means less mess with different packages.

This build has nothing new except that is has been rebuild with the newest Visual Studio 2015 and Windows Driver Kit 10. So for non Windows 10 users there is no urgent need to download/update it. But you can if you like to, just make sure to uninstall the previous/old driver.

This new build was tested on a Windows 10 system with a build-in Bluetooth adapter and a separate Bluetooth Dongle, as well as on a Windows 8.1 system with a Bluetooth Dongle. I wasn’t able to test it on Windows 7, because i have currently no Windows 7 system here around, so please report back if there is any issue.

Windows 10 Universal Driver: Coming Soon™

So this is a multi-system Desktop build and not an Universal Driver. I am going to provide an Universal Driver as well soon, but there is some work to be done. The driver compiles fine and without any error. The only issue is that i have to make an universal .inf file, which simply requires me to read through the MSDN documentation. However, i am currently not able to test the Universal Driver on a Windows Phone nor on an IoT-System, so the build is going to be purely experimental and for people that just want to give it a try.

I am also not quite certain about the driver signing regarding the Universal Driver. I have no clue whether it is possible to deactivate the driver verification on Mobile and IoT-Systems and get an unsigned driver loaded. I would assume there is some way, because devs need the ability to test drivers on the device, but that might require additional test modes, which in turn may have side effects.

Changes

	Windows 10 Desktop Build

Posted on 6. September 201512. November 2015
8 Tips for People that have to deal with C all of a sudden
	

Back at my home university in Berlin, as well as here in Oslo and i assume also at other universities, students learn mainly Java. They may have a single C course about the language, but that is all. Not a big problem, because all other courses are featuring Java as language as well. Until at the end of their studies, sometimes in the master degree studies, they encounter a course that is focused on high performance highly optimized C code, with a lecturer that expects everyone to be well familiar with C.

So i am providing some tips for coding in C. They are not directly targeted for beginners, more for people coming from a higher language, that have to deal with C all of a sudden. But they may be still helpful for programming beginners.

Disclaimer: Other people may have other opinions about my points. I am not (yet) a C Expert, but this is my current “good advice” opinion. I am open for a discussion, so that i may learn and improve as well.

1. Use objects

You can still reassemble something like objects in C. Simply have a header and C file for your object type. In the header define a struct for the object type, that will hold the data of the object. All object methods are defined in its C file and must have a pointer of the object type as parameter. Thereby you can access the data of the object instance. Only methods declared in the header file will be visible to other files that include the header file, so you even have private and public methods. However the object data is all public (although there are also ways to make some variables private but that requires a little bit more afford).

Foo.h

typedef struct _FOO
{
 int Bar;
} FOO, * PFOO;

void DoSomethingWithFoo(PFOO this, int Value);

Foo.c

#include "Foo.h"

static void DoPrivateThingsWithFoo(PFOO this);

void DoSomethingWithFoo(PFOO this, int Value)
{
 DoPrivateThingsWithFoo(this);
 this->Bar = Value;
}

static void DoPrivateThingsWithFoo(PFOO this)
{
 //Do private
}

2. Use Initialize and Finalize/Clean-Up functions for your objects

If you use objects, every object should have at least an Init-Method and if it deals with dynamic memory, contains another object, or must perform any other form of clean up, should have a Finalize/Clean-Up method too. These are basically the objects Constructor and Destructor, although you have to call them yourself (But that is C, you are in charge of everything). The Init method is important to initialize your variables, so they won’t contain garbage. Remember C does not initialize your variables to default values.

3. Dynamic Memory should have a parent object or should never survive its creating scope

When creating dynamic memory through malloc or calloc, that memory should be either freed in the same scope, or should have a parent object, that is in charge of freeing it. First you won’t create memory leaks so easily this way, because memory is either freed right away, or you have an object, that will free it for you when it is destroyed. Secondly this may help you keeping track of you dynamic memory and not getting confused by passing pointers through your program.

In addition you should not pass dynamic memory up your call stack, instead pass it downwards. Otherwise the risk to loose it is quite high. One exception would be an “Allocate” function, that will have to do some calculations for the allocation, but then the calling function is the scope that has to free it or has to assign it to a parent object.

4. Set invalid pointers to NULL, especially after freeing

More about pointers. Pointers that currently do not point to anything valid should always be set to NULL. This way you can check if they are valid and prevent other errors, like segfaults and double freeing. This goes especially for freeing dynamic memory. Set the pointer right after it to NULL, so you are not able to access it afterwards.

5. Use the <stdint.h> header for integer types

The <stdint.h> header defines several integer types with fixed lengths. The problem with the basic types are that their size depends on the compiler and the system. So other system and/or other compiler and your long is now 4 bytes instead of 8 bytes. Especially when dealing with 32 Bit vs 64 Bit this may be a problem.

So in order to have fixed size integers, the <stdint.h> header defines the following types:

int8_t, int16_t, int32_t, int64_t
uint8_t, uint16_t, uint32_t, uint64_t

The number is the size of the type in bits, and that is regardless of compiler or system.

6. Use the <stdbool.h> header for the bool type

C does not come with a native boolean type. The <stdbool.h> header defines a bool type, as well as the keywords true and false. The advantage of using this header instead of abusing a unsigned char is, that this bool type is somehow partly native and does take care of integer overflow.

7. Use the size_t and ptrdiff_t types for anything regarding memory and pointers.

size_t is an unsigned integral type that is used for sizes of objects and memory. Do NOT ever use int to store the size of a type, object or memory. The two important functions that use this type are sizeof, which will return the size of the type bytes, and malloc, which wants to know how many bytes shall be allocated.

ptrdiff_t, as its name suggests, is used when you want to store the difference of two pointers. Here again, do NOT ever use int to store a pointer difference, though most compilers are going to throw a warning.

Both types are guaranteed to have the appropriate size to store those information.

8. Pointers are increased by their type size

So this is a little more advanced but still somehow important. It is totally valid to increment and decrement pointers. This is especially useful to iterate over an array. But be aware that an increment/decrement of a pointer takes its type size into account. This means incrementing a pointer will not move it by one byte. Instead it will move it by X bytes, where X is the size of the type it is pointing to. So it will point to the next object next to the previous one. This is the reason why pointer arithmetic on void pointers are not valid. The type size is not known, therefore the compiler does not know how far it should move the pointer.

Hope this will eventually help someone. If you have something to add or complain, feel free to leave a comment.

Posts navigation

Page 1
Page 2
Page 3
Next page

About Me
			Software Engineer for AR/MR/Hololens and game related technologies. Master of Science in Applied Computer Science, Bachelor of Science in Game-Development. Also Gamer, Nerd and Geek. Currently living in Berlin. Born and grown up in a small village near Hamburg.

Feel free to contact and add me on any social media.

Email: info@julianloehr.de

Recent Posts

	
HID Wiimote 0.3.0.3 & Control Center Issues

	
HID Wiimote 0.3.0.2

	
HID Wiimote 0.3.0.1

	
HID Wiimote 0.3.0.0

	
HID Wiimote Gamepad 0.2.7.0

Tags
	Advices
	Android
	API
	Balance Board
	Classic Controller
	Control Center
	Driver
	Eclipse
	Galaxy
	GameDev
	GameJam
	Github
	Guitar
	Guitar Hero
	HID
	HIDAPI
	HID Wiimote
	Hints
	HTML5
	IR-Mouse
	Java
	JavaScript
	Mapping
	Modding
	Mouse
	NDK
	ofxALSoft
	OpenAL
	openFrameworks
	Oslo
	Overgrowth
	PC
	Tips
	User Data
	Wii
	Wiimote
	Wiimote Driver
	Wiimote Plus
	Wii Remote
	Wii Remote Driver
	Wii U Pro
	Windows
	Windows 8
	Windows 10
	XML

Legal Notice
			Impressum

Datenschutzerklärung

			

	Twitter
	Github
	Youtube
	LinkedIn
	Xing

					

Proudly powered by WordPress	

